· 2 min read

TLS-DH-RSA-WITH-CAMELLIA-256-GCM-SHA384 Cipher Suite

A breakdown of the Cipher Suite TLS_DH_RSA_WITH_CAMELLIA_256_GCM_SHA384, its strengths, and its weaknesses.

Key Exchange Mechanism

Diffie Hellman - DH

Grade - B

Static Diffie Hellman (DH) does not use emphemeral (temporary) keys, meaning it violates perfect forward secrecy. Ephemeral Diffie Hellman (EDH) should be used instead.

Authentication

Rivest, Shamir, Adleman - RSA

Grade - A

RSA as an authentication mechanism in cipher suites is secure because it relies on the difficulty of factoring large prime numbers. This makes it computationally infeasible for attackers to derive the private key from the public key, ensuring confidentiality and integrity in secure communications.

Cipher

Camellia - CAMELLIA

Grade - C

Low usage

Hash

Secure Hash Algorithm 384 Bit - SHA384

Grade - A

Improving greatly from SHA1, SHA-256 and above create secure hashes through robust cryptographic algorithms that ensure collision resistance and preimage resistance. They process input data in fixed-size blocks, applying complex mathematical transformations that make it computationally impractical to reverse-engineer the original data from its hash.

Cipher Mode

Galois/Counter Mode - GCM

Grade - A

GCM (Galois Counter Mode) is a mode of operation for block ciphers, offering both encryption and authentication. Widely used in cipher suites, GCM ensures data confidentiality and integrity with high efficiency and performance. It combines the Counter (CTR) mode for encryption with a Galois field-based authentication tag for data integrity. GCM’s parallelizable nature makes it particularly fast and suitable for high-speed networks and secure communications. By incorporating GCM, cipher suites provide robust security against unauthorized access and tampering, making it a preferred choice for modern cryptographic protocols.

    Share:
    Back to Blog

    Related Posts

    View All Posts »