· 2 min read

TLS-PSK-WITH-RC4-128-SHA Cipher Suite

A breakdown of the Cipher Suite TLS_PSK_WITH_RC4_128_SHA, its strengths, and its weaknesses.

Key Exchange Mechanism

Pre-Shared Key - PSK

Grade - A

A pre-shared key (PSK) in a TLS cipher suite is a symmetric key shared in advance between the client and server. It serves as the basis for establishing a secure connection without the need for public key infrastructure (PKI). PSKs are typically used in scenarios where both parties have agreed upon a key beforehand, such as in IoT devices, VPNs, or certain enterprise networks. They provide mutual authentication and confidentiality by encrypting communication using a shared secret, ensuring that only authorized parties can access the encrypted data exchanged during the TLS session.

Authentication

Pre-Shared Key - PSK

Grade - A

PSK (Pre-Shared Key) cipher suites are used for authentication in secure communication protocols like TLS. They allow parties to establish a shared secret beforehand, ensuring confidentiality and integrity of data exchanges without the overhead of public key infrastructure (PKI), suitable for constrained environments or specific security requirements.

Cipher

Rivest Cipher 4 - RC4

Grade - D

RC4 should not be used as a cipher due to several vulnerabilities, including biases in its keystream and susceptibility to various attacks such as the Fluhrer-Mantin-Shamir attack. These weaknesses compromise the confidentiality and integrity of encrypted data, making RC4 unsuitable for secure communications in modern cryptographic applications. Deprecated in RFC 7465.

Hash

Secure Hash Algorithm - SHA

Grade - D

Chosen prefix attacks for SHA1 are feasible at an accessible cost to a well-funded adversary. This level of expense, while significant, does not pose a substantial barrier to attackers with sufficient resources, making such attacks a credible threat.

Key Size

128 Bit - 128

Grade - A

128-bit symmetric encryption keys are considered secure because they provide an astronomically large number of possible combinations (2^128), making brute-force attacks computationally infeasible with current technology. This level of security is sufficient for most practical purposes and is widely adopted in various encryption protocols.

    Share:
    Back to Blog

    Related Posts

    View All Posts »