Sign InSign Up


Breakdown of the TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 cipher suite

Cyber Security Rating for TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 - B


Key Exchange Mechanism

Diffie Hellman Ephemeral-DHE

Diffie-Hellman Ephemeral (DHE) in cipher suites refers to a key exchange method where each session generates temporary, one-time-use (ephemeral) keys. This ensures forward secrecy, meaning if one session's key is compromised, past and future sessions remain secure. DHE provides an added layer of protection against decryption by ensuring keys are used briefly and then discarded, enhancing security in TLS communications.



Rivest, Shamir, Adleman-RSA

RSA as an authentication mechanism in cipher suites is secure because it relies on the difficulty of factoring large prime numbers. This makes it computationally infeasible for attackers to derive the private key from the public key, ensuring confidentiality and integrity in secure communications.



Advanced Encryption Standard-AES

AES should be used in cipher suites because it offers strong security with efficient performance, large block size (128 bits), and resistance to known attacks. Its widespread adoption and thorough analysis by the cryptographic community ensure reliability and robustness for encrypting sensitive data.



Secure Hash Algorithm 384 Bit-SHA384

Improving greatly from SHA1, SHA-256 and above create secure hashes through robust cryptographic algorithms that ensure collision resistance and preimage resistance. They process input data in fixed-size blocks, applying complex mathematical transformations that make it computationally impractical to reverse-engineer the original data from its hash.


Cipher Mode

Galois/Counter Mode-GCM

GCM (Galois/Counter Mode) is a mode of operation for block ciphers, offering both encryption and authentication. Widely used in cipher suites, GCM ensures data confidentiality and integrity with high efficiency and performance. It combines the Counter (CTR) mode for encryption with a Galois field-based authentication tag for data integrity. GCM's parallelizable nature makes it particularly fast and suitable for high-speed networks and secure communications. By incorporating GCM, cipher suites provide robust security against unauthorized access and tampering, making it a preferred choice for modern cryptographic protocols.

Web infrastructure owners must ensure they only allow secure cipher suites to protect against potential security threats. Cipher suites determine the encryption algorithms and key exchange mechanisms used in HTTPS connections. Insecure cipher suites can leave data vulnerable to interception, decryption, and manipulation by malicious actors. By restricting to secure cipher suites, owners mitigate risks such as data breaches, unauthorized access, and compromise of sensitive information. This proactive measure helps maintain trust with users, ensures compliance with security standards, and safeguards the integrity and confidentiality of data transmitted over the web.
Contact Stellastra to Secure Your Web Traffic Today

Stellastra The Cyber Security Comparison Platform

© 2024 Stellastra Ltd. All rights reserved. All names, logos, trademarks, et al, belong to their respective owners. No endorsement or partnership is necessarily implied between company and Stellastra and vice versa. Information is provided for convenience only on an as is basis. For the most up to date information, contact vendor directly. Scores including email security, SPF, and DMARC are calculated based on Stellastra's algorithms and other analyses may return different results.



About StellastraContact usCyber Security Risk ScoreEmail Deliverability ToolTLS Cipher SuitesStellastra Discover

Stay up to date

Stellastra The Cyber Security Comparison Platform