Logo
Sign InSign Up

TLS_KRB5_EXPORT_WITH_RC2_CBC_40_MD5

Breakdown of the TLS_KRB5_EXPORT_WITH_RC2_CBC_40_MD5 cipher suite

Cyber Security Rating for TLS_KRB5_EXPORT_WITH_RC2_CBC_40_MD5 - F

C

Key Exchange Mechanism

Kerberos 5-KRB5

Cryptographic algorithms with low adoption should be avoided due to several critical reasons. They often lack rigorous scrutiny and testing by the broader cryptographic community, which increases the risk of undetected vulnerabilities. Moreover, their limited deployment means fewer opportunities for real-world validation and feedback, hindering confidence in their security and interoperability with existing systems. High adoption indicates robustness from extensive scrutiny and successful implementation in diverse environments.

D

Cipher

Rivest Cipher 2-RC2

Deprecated, vulnerable to low cost chosen-prefix attacks. These attacks allow an adversary to generate two different plaintexts that produce the same hash when encrypted. Due to its weak security, RC2 is no longer recommended for use in modern cryptographic applications.</a>.

F

Hash

Message Digest 5-MD5

MD5 is considered highly insecure because chosen prefixes can be generated with minimal computing power. This vulnerability allows attackers to create different inputs that produce the same hash, leading to potential data breaches and integrity issues. Consequently, MD5 is unsuitable for modern cryptographic needs and should be avoided in favor of more secure algorithms.

F

Key Size

40 Bit-40

A 40-bit cipher length is too short because it can be easily broken through brute-force attacks due to the limited number of possible keys (2^40). Modern computational power allows attackers to quickly try all potential keys, making 40-bit encryption insufficient for protecting sensitive data.

D

Cipher Mode

Cipher Block Chaining-CBC

Cipher Block Chaining (CBC) mode is vulnerable to the Lucky13 and POODLE (in TLS v1.2 and below) attacks. The Lucky13 attack exploits timing discrepancies in padding validation, allowing attackers to gradually reveal plaintext. The POODLE attack leverages padding errors to decrypt ciphertext by repeatedly modifying and sending it to the server, observing the error responses. These vulnerabilities arise from CBC's handling of padding and error messages, making it less secure than modern encryption modes like Galois/Counter Mode (GCM), which offer stronger integrity and confidentiality guarantees.

Web infrastructure owners must ensure they only allow secure cipher suites to protect against potential security threats. Cipher suites determine the encryption algorithms and key exchange mechanisms used in HTTPS connections. Insecure cipher suites can leave data vulnerable to interception, decryption, and manipulation by malicious actors. By restricting to secure cipher suites, owners mitigate risks such as data breaches, unauthorized access, and compromise of sensitive information. This proactive measure helps maintain trust with users, ensures compliance with security standards, and safeguards the integrity and confidentiality of data transmitted over the web.
Contact Stellastra to Secure Your Web Traffic Today

Stellastra The Cyber Security Comparison Platform

© 2024 Stellastra Ltd. All rights reserved. All names, logos, trademarks, et al, belong to their respective owners. No endorsement or partnership is necessarily implied between company and Stellastra and vice versa. Information is provided for convenience only on an as is basis. For the most up to date information, contact vendor directly. Scores including email security, SPF, and DMARC are calculated based on Stellastra's algorithms and other analyses may return different results.

LinkedInTwitter

Company

About StellastraContact usCyber Security Risk ScoreEmail Deliverability ToolTLS Cipher SuitesStellastra Discover

Stay up to date

Stellastra The Cyber Security Comparison Platform